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=) ABSTRACT
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! )
We consider the choice of technique in a continuous time infinite

USE

WO SRR

horizon optimal growth model. There are n+2 goods, output, labor

s,
/

and machines Moy ooy, M We can convert one unit of labor to
2 n

. r
q units of output or r, units of M& , for each i . Also, we can

-

2,
Patn

convert one unit of labor and one unit of Mi

We prove under some sufficient and necessary conditions that we never

to q . units of output.

MRS

s
P SO

build any machines for the general concave utility function. If the

‘ cendition is not met, we build one machine from beginning to end when
b
»1 the utility function is linear; when the utility function is non-

linear life gets complicated. In the one machine case, we give a

general algorithm to solve it. In the many machines case, we prove

o an asymptotic result (as t -+ é , the behavior is similar to that of
the linear case) and give examples showing that a simple characteriza-

4 tion of the optimal solution is difficult. _

1
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CHAPTER I

MODEL AND DISCUSSION

§1. Introduction

In this paper we investigate the choice of investment in a con-
tinuous time optimal growth model. The general model is described
as follows: there are m goods, some of which may be provided
exogenously (e.g. labor). The technology is described by a set of n
activities, each of which consumes various amounts of goods and produces
various amounts of goods. To be more specific, the technology is
given by a pair of nonnegative m X n matrices A B and a nonnegative
n-vector b, where Aij(Bij) denotes the amount of good i used
(produced) to operate activity j at unit level, and bi(t) denotes
the amount of good i exogenously provided at time t . There is a

utility function which is an increasing concave function of the activity

level.

Problem:
Given b(t) , find an activity vector x(t) to maximize the dis-

counted integral of future utility.
We can write this as a continuous programming problem:

o

(P) Maximize fe""t-u(x(t))dt
0

t
subject to: A-x(t) :fB-x(s)ds + b(t)
0

x(t) 2 0.

S aidain s ihuiaaid,
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If x(t) 1is (P) feasible (x(t) > 0 , Ax(t) g f Bx(s)ds + b(t)),
3 .

then we have the following dual problem:

2]

(D(XR(t)) ): Minimize ‘!w(t)-b(t)dt

-~}

subject to: w(t)A ;.j.w(s)Bds + e-at-VU(i(t))

w(t) > 0.

§2. Optimality Theorem for the General Model

In this section we prove that a feasible solution (x(t)) is
optimal if we can find the corresponding dual price (w(t)) and satisfy

some complementary slackness conditioms.

Theorem 1-1:
If the following four conditions are satisfied

t
(1) x(t) is (P) feasible (i.e., Ax(t) < f B-x(s)ds + b(t) ,
0

(2) w(t) is (D(x(t))) feasible (i.e., w(t)A > ? w(s)Bds +
t

e XFTu(x(t)) , w(t) > o)
t
(3) &(c)[A;c(c) -f B-i(s)ds-b(c)] =0 f
0
(4) [&(t)A-}&(s)sds-e'“t-vu(i(c))]-i(c) =0 }
t

then =x(t) 1s (P) optimal, w(t) is (D(x(t))) optimal. ‘
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Proof:

Let x(t) be any (P) feasible solution

w(t) be any (D(x(t))) feasible solution.
t
w(t)b(t) > w(t)|A-x(t) -!Bm(s)ds
Integrating both sides gives

2] [~+] t

Iw(t)-b(t)dt > rw(t)- Ax(t) —{B-x(s)ds dt
T
0 0
[ f _
= w(t)A - | w(s)Bds|-x(t)dt (changing the order of
o
0 t

integral)

;fe~at-VU(§<(t))~x(t)dt (w(t) is (D) feasible)
0

;fe'“t[vu(i(t))~i(t) + U(x(t)) -~ U(x(t))]lde
0

[++]

,fe‘“t.u(x(c))dt +fe‘°‘t[vu6<(c>>-5c(t) - U(x(e))]de
0 0

=J’e‘°“-U(x(c))dt + M.
0

So for any x(t) , w(t)

fw(t)-b(t)d: ;fe-at'U(x(t))dt + M
0

0
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but if we replace x(t) , w(t) by x(t) , w(t) then the above >

are replaced by "=" (from (3) and (4)) thus

J‘:’(t)‘b(t)dt =J.e‘at-U(§<(t))dt + M. (6)
0 0

From (5) and (6)

T

w(t)*b(t)dt reaches the lower bound and
o
0

e t-U(:"c(c))dt reaches the upper bound.

0

So &(t) is (P) optimal

w(t) is (D(x(t))) optimal A

§3. Description of the Investment Model

We now consider the special case as follows:

(1) There are n+2 goods, output (consumption), labor, and

n machines Ml’MZ’ cees Mn .
(2) There are n+1 production activities PO,Pl, ceey Pn .

PO converts one unit of labor to q wunits of output.

Pi converts one unit of labor and one unit of Mi to q

units of output 1 <ign.

(3) There are n {investment activities I_,I., ..., I where
1’72 n’

1. converts one unit of labor to rj units of Mj 1 <jsnm.

(4) Labor is given exogenously at constant rate of one.

L
. i

LAY

-y,




3 Let x be the amount of labor allocated to PO ;
2. be the amount of labor allocated to Pi l1<1ign;

y be the amount of labor allocated to Ii 1¢ ign.

Let & be the discount rate and U be a differentiable increasing
utility function of the output.
n

We define c(t) = q-x(t) + Z qi-zi(t) and ¢(t) = U'(c(t))
i=1

Problem:

Given initial stocks ki of Mi , choose X(t) = (x(t),zi(t),
2n+1
yi(t)) € R, to

@

maximize f e-at°U(c(t))dt

0
t
subject to: zi(t) < rifyi(s)ds + ki l<ign
0
n
x(t) + ) (y.(t) + 2, (t)) £ 1.
i=1 B

By defining 6(X(t)) = U(C(t)) ’ VI}(X(t)) = (qsq19 ceey g, Oy 2oy O)’V(t)

terms
n m
emi“*l and
0! 1 Iy
:i ! :erO
A=)l 1 0 , B= 0 UL
0! L9ty
1411, «.oy 111, , 1 0, ..., 010, ..., O
+1)x(2n+1 n+l
A,seRr" P Ch(e) = (kg ey kD), B(E) € RYT

b

e e infl
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The dual problem becomes:

Find @(t) = (w, (), ..., w (£),w(t)) € B°TL to
1 n +
minimize Ia(t%b(t)dt : ;
0
subject to: w(t) > e—at-q°w(t) i

4, (0

A

w(t) - rifwi(s)ds > 0 114
t

w(e) + v (e) 2 e Trq y(e) 1<

{ A
=
WA
=]

If the utility function is linear, by giving the exact dual price,

r.q. l r,q
we prove that (1) if q > max ?——-1—-]—- =

= ° 2 + r,) PR the stationary
1gizn i

2

r,q
program (y.(t) =0 , 1 < i <n) is optimal; (2) if q < A2 s
i = = a + T,
Tt A
we build MQ (1n fact, any Mt s.t. 4 T liawre rl> . If the

utility function is nonlinear, life gets complicated.

To begin with, we do not know whether a right-differentiable

(see Perold [5]) optimal solution exist:s.l Secondly, we do not know

whether the dual price exist:s.2 To simplify the model, we restrict

the utility functions to those "well-behaved" differentiable increasing

functions such that there exist right-differentiable optimal solutions

lS:ane our model is an economic model, we would like an optimal solution
which is right-differentiable rather than just Lebesque-measurable.

21n 1968, Hanson [3] proved the strong duality of the similar model in

the finite horizon case.




. . 3 . .
and the corresponding dual prices. Under this assumption, we prove

r.,q

22
that (1) q > a—_,_Tl'

is still the sufficient and necessary conditions
for the existence of an optimal stationary program; (2) if the condition
of (1) is not met, we can prove an asymptotic result, i.e., as t =+ » ,
the optimal solution has the same behavior as the linear case.

It is difficult to give a simple characterization of the optimal
solution of a nonlinear utility function because we have examples in
which we switch building machines (Chapter 4, Example 1), or build
some machine Mj in time [Tl’TZ] but later never use Mj

Even in the one machine case, we might have x(t) = 0 in the
first interval, x(t) > 0 in the second interval, and =x(t) = 0
in the third interval (Chapter 3, Example 2).

In the following we prove that by manipulating the model we can

make some assumptions without losing generality.

Assumption 1: ql > q2 > ... > qn s rl < r2 < .. < rn

If .=q., and r, > r, , apparently we never build M,
ql qJ 1 3 PP y i

Mi has the same output, but larger ri).

(1) 1f kj = 0 , then we discard Mj

(ii) 1If kj > 0 , we define a new problem with n -1 machines

(without Mj) and the initial stocks ks given by

- ~

ki = ki + kj . ks = ks lgssn,s#i,]

It's easy to see that the new problem is in fact the same

as the old one.

31: is believed that for all "usual" concave functions, these properties

are true. Since our model is a simple economic model, there should
exist the dual price and a well-behaved optimal solution.
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Hence, without losing generality we can assume 9, # qj ’

if 14 ]

Now we rearrange the machines in order of decreasing output.

n
Assumption 2: K = 2 ki <1
i=1
n j j+1l
If J k,>1, let % k, <1, )} k, >1. We will show
. 1= . 1 . 1=
i=1 i=1 i=1

that the general problem is in fact equivalent to this special case.

(1) We never build Ms s 823+1 j+l
(for
zs(t)=0 . s;j+2 Vt;O .
(2) By (1) we discard MS » 82 3+2 .
(3) Consider a new problem with machines Ml’MZ’

replaced by qj+1 .

By (2) and (3), it is clear that the new problem is essentially the same

as the old one, but i ki < 1 for the new problem.
i=1

Before ending this chapter, we prove two theorems which play the

key role in the following chapters.

Theorem 1-2:

n
(1) =x(t) + Z (yi(t) + zi(t)) =1 for all t (full employment).

i=1

(2) There always exists the dual price wi(t) = [g-at'qi~w(t) -w(t)]+

1 i <n

<
=

which satisfies the conditions of Theorem 1-1.

] k,>1 and q,>q,>...>q
i=1 i 1 2 n

.y Mj and q

ey DTS

Py vempeene
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!
b ! Proof:
- n

(1) If x(&) + ) (y.(t) + 2z (£)) = P(t) <1
i i

| i=1
- | since x(t) has output gq , we can increase x(t)
3 { by 1 - p(t) to produce more output, contradiction.

(2) w(t) 20 and w(t) +w () 3 e " rq -u(t)

implies wi(t) [e—ut°qi°\0(t) - w(t)]+ .

[V

Define:

t

ki(t) = ki + ri‘!‘yi(s)ds .

If ki >0 , Case i: zi(t) < ki(t)

by complementary slackness wi(t) =0 =
~-at
[e qi p(t) - w(t:)]+ .

Case 1ii: zi(t) = ki(t)

w(t) + wi(t) = e_at-qi-w(t) implies

v, (t) = [e-“t'qi'w(t) - W(t)]+ .

If ki = (0 , Case i: there exists T > 0 , such that ki(t) = 0
for t < T and ki(c)>0 for t > T .
-at
wi(t) = [e *qy v(t) - w(t)]+ vt >T.

~ -at
Define wi(t) = [e -qi-w(t) - w(t)]+ for t<T.

w(t) > r z wi(s)ds (wi(t) is the dual price)
for t < T
2ty fu (s)ds (v (s) 2 W, (s)) -

t

s atahm e
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yi(t) =0 for t < T (ki(t) = 0) implies

the complementary slackness is also satisfied

for wi(t) .

Case ii: if ki(t) =0 for all ¢t

similar proof as above.
Thus there exists an optimal price wi(t) = [e_at-qiw(t) - w(t)]+.

Remark:
(1) 1f ki =0, wi(t) need not be unique.

(2) From now on, we always assume wi(t) = [e-ut'qi'w(t)--w(t)]+ .

A solution X(t) = (x(t),yi(t),zi(t)) € ‘Rin+l is called stationary

n
if x(t) =1-k , yi(t) =0, zi(c) = ki (k = 7 ki) for all ¢
i=1

r.q

, i
l<i<n. Let max ————— = v .
= = a +

i
r,
1<i<n i

Theorem 1-3:

qQ>v is the sufficient and necessary condition for the existence

of an optimal stationary program.

Proof:

If q > v, the stationary program is feasible and c(t) =

n
q*(l-k) + 2 ki'qi = constant implies y(t) = constant = ¢ > 0 .
i=1
Define: w(t) = e_at-q'w(t) = e-at-q-c and wi(t) = e_at'(qi-q)w(t)

-at
e (qi q)ec .

It is easy to see that if we can prove di(t) 20

then the stationary program is optimal.




di(t)

L}
[1d
|
Q
»
£
(o]
]
2}
[¥8
(1]
]
e
1]
~
£
[

!
K
~

.

(2]
(=%
/]

S loq - r;(q - )]

r.q
. i'i
0 (aq 2 ri(qi—q) is equivalent to g > .+ ri) .

v

The other direction is similar. (Here we use the assumption of the

existence of the dual price.)

prawey
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CHAPTER II

THE LINEAR UTILITY FUNCTION

To develop better understanding of the general concave utility
function, we start with the linear utility function. There are only
two kinds of the optimal program for the linear utility function:
one is never building any machine, the other is building only one

machine.

For completeness, we list the stationary program in the following.

§1. Stationary Program

Theorem 2-1:
q > v 1is the sufficient and necessary condition for the existence

of an optimal stationary program.

From now on, assume q < v .

§2. Nonstationary Program

r.q,
Machine j 1is called best, if ;—i—%— =v. I={i] Qv
N j
lgign)=1{1,2, ..., N} ,K= ] k . Machine i is called good,
i=1
if {€1.

For any best machine j , the following program is called the

best program with respect to j : x(t) =0, yi(t) =0 1i+¢3,

-r.t
= -n j = - =
yj(t) (1-k)e ’ zi(t) ki ie1l {3} , zj(t) kj +

-r, t
(1-k)(1.-e i ) . zr(t) =0 r¢&1. (This means that all the good
machines are fully utilized, then the rest of the labor is used to

build machine j .)

Eppe~e

R L y—




Theorem 2-2:

The best program with respect to j 1is optimal.

Proof:

n
e(t) = ) qi-zi(t) » b(t) = constant = a > 0 (because U is linear).
i=1

Define:

( r
sQ. r.q.
- -d
w(t) =eat°[q-a+S] = e t'a—-}-_‘;—a ’ S=['&-—:1—-1_—
b 3

i¢€1, di(t) =w(t) -0>0.

1If 1e1, zi(t) = ki(t) s If 1 €1, zi(t) =0 .

The complementary slackness is also satisfied B
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Economic Interpretation: .
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r.q.
We can think a—i—i— as the present value of machine j . If

J -r,t
we only build machine j and fully utilize it, then kj (¢) =1-e
o -r.t r.q.
and feat-q,(l~e j)dt:=—-]-—-]—.
0 i o + rj




CHAPTER III

GENERAL CONCAVE UTILITY FUNCTION - ONE MACHINE CASE

For the general concave utility, to get deeper insight about
the structure of the many machines, we begin with one machine case.
In the beginning, we derive some simple properties. Later we prove
that if the initial stocks are sufficiently large, we don‘t use labor
alone to produce output. If the utility function is quadratic, we
have a simple optimal solution. Otherwise, we have an example with
a non-simple solution. We also give an algorithm to solve the general
problem. By scaling, we can assume q = 1 without losing generality.
Because of the simple structure, we rewrite the primal and dual

feasibilities in terms of the following simplified notation:

x(t) « x(t; , y(&) <y, (&) , 2(t) = 2, (t) , T «xr) , q*q -

( ¢

z(t) < r [ y(s)ds

A

primal feasibility: <
x(t) + y(t) + z(t) = 1

x(t) , y(t) , z(t) 2 0.

w(t) > e *Fay(r)

Hv

o«

w(t) 2 rfwl(s)ds
dual feasibility: < 4

e %t g u(e)

v

w(t) + Wl(t)

v
(=]

\W(E) . W (0) 2

JRNCPIU RS
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For completeness, we list the stationary program in the following.

§l. Stationary Program

Theorem 3-1:

1> ﬁ; is the suificient and necessary condition for the

existence of an optimal stationary programl

1 < 24—,

From now on, assume a T

§2. Nonstationary Program

We begin with some simple properties.

Property 1:

y(t) > 0, for all tl.

Proof:

If there exists an interval (T,T+¢) such that y(t) =0 for

t € (T,T+€) , then y(t) = 0 for all t > T , which by stationary

1> =9 Contradiction to 1 < —3— W

impli .
property implies 25+ g

Corollary:

wt) - f wl(s)ds =0 forall tiB
t

IWe disregard those isolated time points. When we say y(t) > 0 for
all t , we mean there is no interval such that y(t) = 0 on that

whole interval.




Ll

Property 2:

k(t) = k

Proof:

0

e e s s+ v

t
+r f y(s)ds = 2z(t) (fully utilize the machine).
0

By contradiction. If not true,

Case 1i:

Case ii:

From the above three equations, we have e 2'a'tb(T:)_) >

there exists T > 0 such that z(t) < k(t) for all

wl(t) = 0 (complementary slackness) implies w(t) =

w(t) > e_at~w(t) implies ¢(t) = 0 , contradiction.

there exists Tl , T2 such that 2z(t) < k(t) for

t € (Tl,Tz) and z(t) k(t) for t € (TZ,T2-+E)

"

C(Tl) = x(’I‘l) +q°2(T1)

c(T,) implies W(Tl) > ¢(T2)

0= w(Tl) -r f wl(s)ds = w(Tl) -r f wl(s)ds (wl(t) =0,
T T
1 2
= w(Tl) - w(Tz)
-aTl _
0= W(Tl) -e 'Q'w(Tl) . (wl(Tl) = 0)

-aTz _
W) S gy . (2(T) > 0)

-aT -aT

contradiction to T, < T, and w(Tl) > w(Tz) [

Corollarv:

k(t) <1

Proof:

1 2

17

t>T.

o .

0+q:z(T;) < x(T,) + q-2(T,) =

t € (Tl,'rz))

v
[1]
.
Fal]
.
<
)
—3
—
N

for all t . (We never accumulate to 1 unit of machine.)

The maximum amount of machine we can have in an optimal solution

is given by the following program: x(t) =0 , y(t) = 1-k(t) ,

e s
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t
z(t) = k(t) . k(t) =r f[1-k(s)]lds + kO , which implies k(t) =
0

1 - (1--1<0)e'rt , thus k(t) <1 for all t W

Remark:

Property 2 does not hold in the many machines case.

Property 3:

w(t) is continuous.

Proof:

w(t) = r fwl(s)ds.
t

Property 4:

Y(t) 1is continuous.

Proof:
By Property 2 and (t) = U'(x(t) + q+z(t)) , if we can prove
for any given T > 0 , a sequence t, T such that x(tn) + X

we have w(tn) -+ ¢(T) , then ¢(t) 1is continuous.

Case 1i: x(T) =0 . 1If x(tn) + X = 0 , apparently w(tn) + u(T)

If x(t ) >x >0, then lim c(t ) > c(T) and
n oo n

Hm gt ) < ¥(T)

n-r«

By slackness, e-at'w(tn) = w(t )= w(l) 2 e Fey(m)

Combining the above two equations, we have w(tn)-* Y (T)

Case ii; x(T) > 0 . 1If x(tn) > 0 , the same proof as above.

1f x(tn) = 0 for all n , lim c(tn) < c(T) and

n-re

i IR B D ey T S o SRR e ia il




lm gt ) 2 v(T)

n—b@

e eyt ) < wlen) = w(D) = e *Fey(m)

TCIIERTGY

Combining the above two equation, we have

Corollary 1:

If u(x) 1is strictly concave, then (1) c(t) is continuous;

(2) x(t) , y(t) are continuous.

Proof:
(1) If c(t) 1is not continuous, then Y(t) 1is not continuous,
contradiction.

(2) c(t) = x(t) + q-z(t) . For c(t) and z(t) continuous,

x(t) 1is continuous. y(t) =1 - x(t) - z(t) implies y{(t)

is continuous tooll

Corollary 2:

wl(t) is continuous.

Proof:

wl(t) = [e_at-a-w(t) - w(ci]+ . Since y(t) and w(t) are

both continuous, wl(t) is continuous tool

Property 5:
If x(t) >0, y(t) >0, z(t) > 0, then y(t) = c_e[a—r(q-l)]t

c>0, te€ (Tl’TZ)
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Proof:
. -at -at -
The dual equations are: w(t) = e () , wl(t) = e *(q-Duy(t) ,
w(t) = r f w (s)ds . The solution is u(t) = crelor(@DIe s o m
t

Corollary 1:

If u'(q) >0 and x(t) >0, y(r) >0, z(t) >0, then

p(t) < 8 <0 .

Proof:

P(t) = [a-r@-DI() < U (@a-r(g-H] =<0

Corollary 2:

If y(t) = constant for t € (T,T+¢) , then x(t) = 0 for

t € (T, T+ec) B

Corollary 3:

c(t) is increasing in (Tl,Tz)

Proof:

@(t) = c:-[on--r(a_1)]~e[m—1’:(q—l)]t <0, so y(t) is decreasing in

t . Since U'(x) is decreasing in x, c(t) 1is increasing in (Tl,T,,)l

Property 6:
If the utility function is strictly concave, then c(t) 1is a

strictly increasing function.

Proof:

If there exist Tl’ T2 Tl < T2 such that C(Tl) > c(Tz) .

bv Property 4 there must exist T , T € [Tl,TZ) such that i
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c(T) = max c(t)
tG[Tl,TZ]

If x(T) > 0, by Property 5 c(t) 1is strictly increasing in
(T-¢,T+¢) , for € small enough, contradiction to

c(T) = max c(t)
t:e[T1 ’TZ]

If x(T) = 0, by Property 2 c(t) 1is strictly increasing in

[T, T+¢) , for € small enough, contradictionl

In the following, we study the asymptotic behavior.

Theorem 3-2:

If the utility function is nonsaturate (U'(a) > 0) , then for
t sufficiently large, x(t) =0 .

Before proving this theorem, we need the following lemmas.

Lemma 1:

If the utility function is nonsaturate, k is the initial stock

0

and u'(3ky) £ U'() «—29_ | Then =x(t) =0, y(t) = (l-ko)e_rt ,

a+r
-rt . .
z(t) =1 - (l-ko)e is optimal.
Proof:

Define

w(t) = e *Fe[p(t) + s(0)]

w () = e @ - D) - s(0)]

-(a+r)x (a+r)t

where s(t) = -y(t) + ra e sP(x)dx-e

= 8

disic
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wl(t) = e_at°c-l'¢(t) - raIe-(a+r)xw(x)dx-e(a+r)t
t
2 e “Teqeu(r) - rgu(e) fe"(m"'r)xdx-e(cﬂ'r)t (w(t)
t

-at - Q r
.q.w(t) . ¥

tr-Tf.o.
a r

Apparently, w(t) > 0 too.

is decreasing)

By calculation, w(t) =~ J wl(s)ds for all t , which implies
t

the complementary slackness is satisfied.

If we can show w(t) > e-atﬂb(t) , then the dual feasibility is

also satisfied, thus optimal.

U'(a.ko) 2 w(t) > U'(a)
s(t) = -y(t) + l'C_lJ‘e-(a+r)xw(x)dx-e(r+a)t

t

U (2 Iy (3
U'(q ko) +t— U (q) > 0

Wv

implies w(t) 2 et m

Lemma 2:

k(t) 1 for t sufficiently large.

Proof:

Since k(t) is increasing and bounded, k(t) » K, y(t) » 0

as t » ® .

b i kMM
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If k<1,as t—+o x(t) =1-y(t)-2z(t) =1-k(t)-y(t) -~
1-k > 0. By Property 5 y(t) - 0 , contradiction. Thus k(t) -1

for t sufficiently large @@
Now we are ready to prove the theorem.

Proof:

a—%—; >1 and U'(q) > 0 imply the existence of k < 1 such that

'(q* v'._ni__
U'(a k) < U'(Q) « 5

By Lemma 2, there exists T > 0 such that k(T) > k .

Now by Lemma 1, for t sufficiently large, we have x(t) = 0N

In the next section, we give a general algorithm to solve the
one machine problem completely. This algorithm comprises of solving

two subproblems (one with three activities, the other with two

activities) backward by turns. It turns out that we can partition the

machine stock into disjoint intervals such that on each interval

either two activities or three activities are optimal, and alternately.
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PROBLEM I (k)

(1) Objective: To find the largest interval [k,k] such that
x(t) >0, y(t) >0, z(t) > 0 is optimal if the
machine stock is between [i,k]

(2) This method is similar to the dual simplex method. By maintaining
the dual feasibility and complementary slackness, we try to find
the largest interval such that the primal feasibility is also

satisfied.

0
(3) 2(t) =k -r fy(s)ds t <0
t
) ) 0
c(t) = 1-y(t) -2z(t) +q-z(t) = 1-k+qk-y(t) -r(g-1) { y(s)ds .
t

Step 1l: Solve equation U'(k-a)-e[a—r(q-l)]t = U'(c(t)) with boundary

condition y(0) = 1~k .
Step 2: Compute 2z(t)

Find T (T < 0) such that z(T) = k0 . (T always exists,
Lfomr(a-1)IT

for as T » -= , + += implies the equation in

Step 1 has no solution.)

Step 3: If for all t € [T,0) , O < y(t) + z(t) <1, y()z0, z(t) >0.

Let k <« ko , A « -T . Return.

Otherwise, go to Step 4.

Step 4: Find smallest T (T < T) , such that for t € (f,O)

0 gy(e) +2(t) 21, y(e) 20, z(t) >0 .

A

Let i « z(f) , A « =T . Return.

[ PaSrT—
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(1

(2)

(3)

Remark: s(t) 1is the solution of the following integral equation with

PROBLEM II (k)

Objective: To find the largest interval [E,k] such that
x(t) =0, y(t) >0, z(t) >0 is optimal if the machine
stock is between [k, k]

This method is similar to the simplex method. By maintaining
the primal feasibility and complementary slackness, we try to
find the largest interval such that the dual feasibility is

also satisfied.

x(t) =0, y(t) = (1-k)e "t , z2(t) =1 - (L-k)e ™%,
c(t) = qll - (1-k)e ™%
-0 -(r+a)s - (r+a)t
s(t) = =U'(c(t)) + [rq f e +U'(c(s))ds + U'(q-k)]-e .
t

boundary condition s(0) =0 .

e 2t (U (e (b)) + s(t)] = ¢

S g

Step 1: Find T (T < 0) such that k. = 1-(l-k)e °° = z(T)

0

(T always exists, for z(T) - -2 as T »+ -= )

Step 2: If for all t € [T,0) , s(t) 20 .

Step 3: Find smallest T (f < T) such that s(t) >0 for t € [f,O)

Let R - ko , A « ~T , return.

Otherwise, go to Step 3.

Let k « z(%) s, A« -T . Return.

2 ARy s S W et . e —— e

e ¥ (@-1)U"(c(x)) ~s(x)]dx .

PO AP
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ALGORITHM

Initialize: Find k decided from Theorem 3-2.

k1+f<,i+1,k«k1

Step 1: Solve Problem I (k)
i+ i+l
i i i
x (t) « x(t) , y(e) « y(t) , 27 (r) « 2(t) , k, «
If ki = ko , Stop.
Or else, k <« ki , and go to Step 2,
Step 2: Solve Problem II (k)
i« i+l .

$(E) « 0, yh(e) « y(&) , 28(e) « z(t) , kK <k, 8, «d .

If ki = ko , Stop.

Or else, k +« ki , and go to Step 1.

To find the optimal solution, we have to reverse the order of the

indices. Let N+1 be the last index.

old indices +k K, k. -1 K, =k
N+1 AN+1 kN i Ai i 1 Al
new indices +k 5k K SNe2-1 k K Snel 1
o 1 N+1-1 N42-1 N
Ai*AN-l-Z-i , 2 i < N+1
ki - kN+1—i » 1L <1 < N+1
N+2-1 N+2-1

(t) ,

x' - XN+2-i t) , zi(t)<-z

() , yie)«y

2 < i < N+1 .

3iad e e ey £ Y
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1
Define T, = ) A, , 1 <i <N, T =0. Then
i It =" = 0

n .

A

(1) xi(t) , yi(t) , zl(t) is optimal for t &€ [Ti_l,Ti) 1c1i

(2) x(t) =0, y(&) = (1-K)e™ ™", z(t) = 1-(1-Kke "% 1is optimal

for t >T .
= "n
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§3. Quadratic Utility Function

2
When the utility function is quadratic, U{x) = ~ (l-zx—)-, M>q,
we have a simple optimal solution. First we would like to compute 12 .

t

w(t) =M - g+ ql-k)e "

(-]

-y (t) + rafe-(rm)s-w(s)ds-e(rﬂ)t

t

s(t)

r{(g-1) - o - _a—r(a—l)+r.—. _Tya"Tt
@ +r (- q) o + 2r q-(1-ke

Case i: M > ¢q

0 , then k=20.

0, let k satisfy HAZLZ (y.3) -

If a-r(qg-1) +r

WA

\'

If a-r(q-1) +r

a - r(c—;-l)+r

o T or q(1-k) = 0 , then k = max {0,k}

Case ii: M = q

bkl
[}
(@]

If a-r(a-1)+r 0 , then

A

~>
[}

If a-t(c—l-l) +r >0, then 1 . (By Property 2, this means

we never reach this situation.)

Remark:

-~

o - r(a-l) +r 3 0 is not a sufficient condition for k = C

~

in a general concave utility function. If k = 0 , then we have

~

x(t) = 0 forall t . If k > 0, we would like to find the optimal

program by using Algorithm.

Solve Problem 1 (fc)

ot o vt e




0
w(t)=M—1+f<-c’;-f<+y(t)+r(c';—1)fy(s)ds t <0 .
t

Solve U'(l;'a)'e[a.-r(q-l)]t = () with y(0) =1 - k . Using the

equation Eﬁﬂé:%l;:—& M-7q) - 2= r(q-1) +r ql-k) = 0 to simplify

a + 2r

y(t) , we get

« - 2 - ~ -
y(t) = (1 -k)[a.- r(g-1)+rj” . er(q-l)t+ M~qg-k)[a-r(g-1)] ) e[u—r(q~l)]t’
[a-2r(qg-1)1(2r +a) a-2r(q-1)

Fact 1:

y(t) is decreasing and y(t) 20 for all t <o0.

Proof:

a-r(qg-1) <0 implies ;(t) <0, thus y(t) 1is decreasing.
Also y(0) = 0, thus y(t) >0 for t<O0@
Fact 2:

y(t) + z(t) 1is a concave function.

Proof:
2

5y + 2] = & 50 + 30)] <0 (for a-r(3-1) <0
dt

and a-r(q-~1) +r>0) @

Fact 3:

y(t) + 2(t) ¢ 1 for all t <O .




daaninbiios

Proof:

y(t) + z(t) 1is increasing as t - 0_ . (Otherwise, violate

y(t) + z(t) 1 for y(0) + z(0) =1 .) By Fact 2, y(t) + z(t)

na

is increasing for all t < 0, thus y(t) + z(t) <1 for all ¢t < o

From Fact 3 and Fact 1, Algorithm stops.

Summarize the results as follows:

(1) If M > q :

(i) If k

v
>

, then x(t) =0 , y(t) = (l-ko)e-rt ,

z(t) = 1 - (l-ko)e-rt is optimal.

=

(ii) 1If k, < , x(t) >0, y(¢) >0, z(t) > 0 1is optimal
if t < T , where k(T)=12.

x(t) =0, v(t) >0, z(t) >0 is optimal if t >

v
3

(2) 1f M=gq :
(i) If a-r(q-1) +r >0 (]:<=1) , then x(t) > 0 ,
y(t¢) > QG , z(t) > 0 is optimal for all t .

(ii) If a-r(g-1) +r <0 (k =0) , then x(t) =0 ,

na

y(t) = (1-k0)e'“ , z(t) = 1- (1-1<0)e'rt is optimal.

Example 1:
q=2,a=0.9,r=1, kg = 0 , and the utility function is
(5-x)2 - -
U(x) = - r(gq-1)-a=0.1>0, a-r(g-1)+r =0.9>0.
(1); x 3 - gg x2x (1-k) =0 implies k = 0.73 . We can compute

y{(t) , z(t) , x(t) , when k(t) < 0.73 , using the formula derived

before @

dntadaniin sl
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Let T be such that x(T) + 2:2(T) =1, and 2z(T) = k .

Example 2:

Consider a modified quadratic utility function U(x) = 4x - 12

2

if xg1, UK =- SjL%fil- if x>1 . From Example 1, if
k > k(t) 2 k  (k(t) 4is the capital stock at time t), x(t) > 0 ;
if k() 2 k , x(t) =0 . If k(t) < k , the output is located on 3

the linear part of the utility function, thus x(t) =0 (by Property 5,

Corollary 2). ,

The following pictures show the discontinuous behavior of the 3

optimal solution.

A A A
x (k) y (k) z (k)
:
]
0 —0 " - . . =~ ) _
ko k k k k k
Remark:

We can remodify the utility function to be strictly concave by

UGx) = bx - 12 - es(x-1D2 , e>0 1f x<1 . As €>0, U"(x) 0

if x ¢ 1 . By Corollaryl, Property 5, x(t) > 0 for all t , where

k(t) < k , is not optimal.
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CHAPTER IV

GENERAL CONCAVE UTILITY FUNCTION - MANY MACHINES CASE

In this chapter we generalize the idea of Chapter 2 and Chapter 3

to obtain the asymptotic result. Also, we give an example which shows

the off-beat nature of this general problem. Again, we list the

,A
— AL

stationary program for completeness.

o o

1 81. Stationary Program

Theorem 4-1:

T194
1 > max e
l<i<n i

is the sufficient and necessary condition

for the existence of an optimal stationary programill

r.q.
i’i

From now on, assume 1 < max ———
a+r

l<i<n i 1

§2. Nonstationary Program

.

To begin with, we prove some simple properties.

—ey
L 3 e

Progertz 1l:

w(t) 1is continuous.

Proof:

We only need to consider those T > 0 such that there exist

i, j(L+#3) and yi(t) >0 for t &€ (T-¢,T) and yj(t) >0

for t € (T,T+¢)
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If t € (T-¢,T) w(t) ri.‘;wi(s)ds , w(t) > rj f wj (s)ds .

v
La ]
-
&
~
1]
~
(=W
1]

If t € (T,T+e) w(t) = ;5 fwj (s)ds , w(t) >
t

If w(T) > r, J-w.(s)ds , then as t =+ T , w(t) » r, fw,(s)ds <
ig i - i i

w(T) = r, J.w,(s)ds , contradiction., Thus w(T) = r, J.w,(s)ds and
g ] iq i
w(t) 1is continuous @

Remark:

This property gives us the boundary condition.

' Property 2:

¢(t) 1is continuous.

Proof:

If we can prove that for any sequence t_ -~ T , such that x(tn) + 8

A

or there exists i such that zi(tn) - B and zs(tn) =0 s i-1,

we have w(tn) + ¢(T) , then y(t) 1is continuous.

The proof is similar to that of Property 4, Chapter 3

Corollary:
If u(x) 1is strictly concave, then (1) c(t) 1is continuous;

(2) x(t) and zi(t) are all continuous 1 < i < n@

Below we study the asymptotic behavior. We follow the notation ‘

e~
=~
[
A
(=
L3
e
v
(=}
N

of Chapter 2, and let L = {(kl, e kN) l

i=1
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For any best machine j , k = (kl, ey kN) € L , define the following:

ki)~(l - e—rjt)

| 12

_ N
c(t,k) = Z

k,+q, + q.(l -
i=1 1t J i

1

_ _ ~-(a+r.)s _ (a+r. )t
s(t,k) = -U'(c(t,k)) + rjqj fe J U'(c(s,k))ds e J
|

_ F -(atr,)s _ (a+r )t |
Kel, and rjqj e I Ut (e(s,k))ds e LR
t
u' k 0
. >
Ane1 (c(t,k)) >
G =<K T s _ T -(atr.)s _ >
JELNCICRLERACIET RS K I .Ut (c(s,k))ds-
t t
r.t
ed +q(r,-r,) >0 for i€1 - {j}
J ] 1 =
\ for all ¢t >0 . )

Given any initial stocks ki of machine i, 1 < i <n, let

k = (kl, e kN) , and we have the following theorem,

Theorem 4-2:

1f Keg , then the best program with respect to j 1is optimal.

*
If N = n , then replace

by 1 ; * implies s(t,k) >0 for all

N+l




Proof:

The output rate function is c(t,k) . Define:

o wit) = e %t Ut (e(e,k)) + s(t,K)]

! w () = e [(q - DU e(e,B) - (el L

nA
o
nA
o}

f iel,

(a - 1)U (c(t,k)) - s(t,k)

_ ~(at+r,)s _ (a+r,)t
q.°U'(c(t,k)) - r.q. | e 3.yt (e(s,k))dsre I
1 173
t

_ r.q. _ _
qi-U'(c(t,k)) - -q—i—i— U'(c(t,k)) (U'(c(t,k)) 1is decreasing)
b]

v

0 (definition of I)

v

implies wi(t) = e-at-[(qi'-l)U'(c(t,E)) - s(t,k)]
If i&€1,
. (qi-l)U'(c(t,E)) - s(t,k)
b
' _ - (o+r)s - (otr )t
“ < qN+l‘U (c(t,k)) - tjqj fe +U'(c(s,k))ds*e
t
(4 £ agy)

<0 (definition of G)

implies wi(t) =0 .

o0
w(t) = 1::i I wj(s)ds (by the result in the one machine case).
t

)
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) f
|
; If 1€&€1, . 1
- :
I w(t) - riJ.wi(s)ds =w(t) 2 0.
- t 4
1 !
:
1 If ie1l, ;
]
i - i
‘ w(t) - rifwi(s)ds
B! t
“
3 ; ] o
-__‘.' —as _ - (o¢+rj )s _ rj t
7l = fe *U'(c(s,k))dsr_(q.-q.) + | e *U'(e(s,k))ds"q (r, -1 )*e
% 149579y )) a;(ry -5y i
Y|
> 0 (definition of G) -
”.‘ Complementary slackness is also satisfied. Thus the best program ]
4
' with respect to j 1is optimall®
a N N _ '
- Let a = k.*q. +b , b=gq.|1 - k.] , then c(t,k) =
1 121 i " 121 * oo |
-r.t _
a-be J ,U'(a <U'(c(t,k)) < U'(a-b)
Corollary 1: :
7 i
. t L
. If P
{ b
A / P
! r.q, qj(’cj - :i)-a 4
U'(a) + il , U (a) -
(a0 + 1:j)qN4_1 (a0 + rj)ri (qi qj)
if 1€1-(j) and r >r , '
U'(a-b) 5min< ] .
g = )
(@ + r)r,*(q, - q,)
1 . h M T | i . (s
U'(a) RCAEE NI if i €1-{j} and Ty

p | AT ¢ 3
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then the best program with respect to j 1is optimal.
Proof:
)
-(a+rj)s _ (a+rj)t -
. \ . - - '
rjqj e U'(c(s,k))ds e Ayep Y (e(t,k))
t
r.q.
> a—i—i; u'(a) - qN+l'U'(a-b) 20 (by assumption).
If r,>r, and i€ 1 - {j}
j i
7 -as _ -(a+rj)s _ rjt
- ' - . - L] 1 - - L] -
e U' (c(s,k))ds T, (qj qi) + 1 e U'(c(s,k))ds e qj (rj ri)
t t
' - L] . - ' . L) -
> Vb, (qj %) + v % (rj 3 et (g, > q)
= o a + rj i hi
>0 (by assumption).
If r,>r., and 1 €1 - {j}
i3
i —as - 1 -(u+rj)s _ Tt
. ! . . - -+ 3 ' - . - -
e U'(c(s,k))ds r, (qj qi) e U'(c(s,k))ds e qj (rj ri)
t

t

o]

wv

U'(a)'r.*(q,~q,) U'(a=~b):q,*(r,-r,)
1 1 b ) j i ~at
[ * o + rj ] € (qj g qi>

0.

Hv

Thus K € G and the best program is optimalll

Corollary 2:

1If U'(a) » 0 and

r,q f
14 for 1 4 j , then when !

r.q.
1Y N

+
q a+rj [+ I‘i
I k,»1,Kecq.
i=1
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Proof: R
r.q, r.q.
>q (N+1 ¢ 1) , implies ——td— > 1,
+ +
a rj N+1 (a rj)qN+1

If i€1 - {j} and rj>ri,

(r, -~ r)a-(a+r,)r.{(q. -q,) =rqa+r)-r.q.(c+r1,)
q, (r, 1) ( J) 1495 9y 395 l) iql( 3

r.q, r.q.
>0<-1q-] > lql) !
bl
o+ r, a +r,

J 1

qj_(rj - ri)a -
(o + rj)ri(qi - qj)

implies

If i€l - {j} and ri>rj s

(a +r.)r. (g, - q,) - q.(r, ~t)a=1r.q,(a+1r,) ~r q(a+r1r) >0,
3Ty - ay) - aylry Ty 393 i 193¢ 3

(a + rj)ri-(qj - q,) |

. . i
implies 3. (r. - t.)o >1 .
J 1 J
N N
As Z ki + 1, U'(a) »U'(a-b) ; thus as E ki + 1, Corollary 1
i=1 i=1

is true, which implies K€ G @

Remark:
If the best machine is not unique, we can use Taylor Expansion

to get the similar result.

Lemma 1:
As t » = , c(t) » constant, zi(t) ~+ constant, yi(t) +0, j

x(t) -+ constant.

13745 1 A T § T T
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Proof:

‘ j Since ki(t) is increasing and bounded, ki(t) - ¢, as t > oo

n

} which implies y.(t) >0, ) z.(t) +x(t) 1 as t + » ,
1 i=1 1 I
"’ Since 9 > 9, > ... 2 q, >1, so x(t) and zi(t) - constant :
.1 n
i as t >, c(t) = x(t) + z qi°zi(t) + constant as t -+ =8
i=1

?:'-_'.

AP

Theorem 4-3:

N

As t =, ) k. (£)~>1.
. 1
i=1

e

Prabi Ny,

'q Proof:
_; For any e > 0 , there exist T,Pl,P?, .y Pn , P >0 , such that
3 .
! x(t) 2P, z,(t) 2P, 1 <ign and ZPi+P;l-e for all
! i=1
4
F ’ t >T . After time T we can solve the original problem in the .
j following two steps:
N Step 1l: Put Pi(P) units of labor to work with machine i (alone).
g
o n
‘i Step 2: Consider a new problem with 1 -~ z Pi + P units of
i=1 ]
3 labor: 1let c{(t) be the output rate function, ﬁ(x) é
. be the utility function, where ﬁ(E(t)) = ‘ i
o |
Ulc(t) + pP.q. +p
i=1 i1

As € +- 0, u(c(t)) + constant for all ¢t , thus the optimal

program for Step 2 is the best program with respect to j , which

implies that we only build machine j as t + = ., Combining Step 1

R I e el *
PR

el
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and Step 2, we find that as t - = we only build machine j . From

the proof of Theorem 4-2, we must have zi(t) =0 i¢l as t + » ,

N
which implies ) ki(t)y >1 as t>=®

i=1
Corollary:
r.q r.,q
' (a i ., 17 T
1f U(q1)>0’a+r,>a+r for i # j , then for t

sufficiently large, the best program with respect to j is optimall

Property 3:

¢(t) 1s decreasing.

Proof:

By contradiction. If not, let (T-€¢,T) be the last time interval
such that y(t) 1is increasing. (T exists, for ¢(t) is continuous
and as t + » the best program is optimal.)

There are two possibilities: x(t) >0 or 0 < zi(t) < ki(t)

for some i . If x(t) > 0 and (¢)y >0, t € (T-¢,T) ,
Ve

o

w(t) = e_at-w(t) = rszl(s)ds

t
T ©
, -~as
< rlfwl(s)ds + rl(qz-—l) w(T)je ds
t T

(¥(t) 1is decreasing for t > T and wz(t) <

e-at-w(t)°(q2 -1)) .

o s | B I L.

. S Ko eec il a2y T




As ¢~ T_, c—aTow(T) < rl(qii_l) w(T)-e-aT implies o g rz(qZ ~1)

lo-t,(q -1 ]t i
But y(t) = cre (by Property 5, Chapter 3) implies .
g(t) 1is decreasing, contradiction. In the case of 0 < zi(t) < ki(t) , ?
the proof is similar @ ]
Corollary 1:

ikdhatide. acthindnads

f
If yi(t) >0 then a g ri(qi-l) . !

Proof:

e fuy(e) < w(t)m

Corollary 2:

If u(x) 1is strictly concave, then c(t) 1is strictly increasingl

§3. Example

Example 1:

The following two-machines problem shows that we build different

machines. (Time [0,T) we build machine 2, time {T,») we build

machine 1.)

2
U(x) = - 5215551— va=09,r =1,q =50 ,71,=4,q,= f#% , g=1.

1% T29;
;f:_;; = q, > ;~;—;; implies machine 1 is best, machine 2 is good.
And we can find the exact dual price, using the technique in Chapter 3,

-, T
such that there exist T , k > 0 (k =] -e 2 ~ 0.0932) and
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-r_(t-T) -r, (t-T)

x(t) =0, yl(t) = (1-k)e 1 » 2,(e) = 1 -k - (1-k)e 1 R .

zz(t) =k , yz(t) = 0 is optimal for t > T ; x(t) =0, yl(t) =0,
Iyt =Tt

zl(t) =0, y2(t) = g . zz(t) =1-e is optimal for t < T .

Example 2:

This two machines example shows that we build machine 2 in some

time interval (Tl,TZ) , but as t +- ® we never use machine 2.

= - - =k = = - 20 -
M—Sl,rl—l,ql-SO,kl-kz-O,a 0.9,q2 1.9 ° :
(51 -x)?2
r, = some large number (decided later), u(x) = - = ,q= 1. P
l
r,q r,q
1°1 _ 50 40 _ 272 , . ® !
@+, =197 1.9 %225+ r, » implies 2z (t) 0 as t~ !
(machine 2 is not good). o - rl(ql-l) + r, = 0.9-49+1<0, {
-r.t -r¢ !
so if we can prove that x(t) = 0 , yl(t) = e s zl(t) =] - e . i
y,(t) =0, zz(t) = 0 is not optimal, then there must exist some time ; ]
-r;t K
interval in which we build machine 2. If x(t) =0, (t) =e s )
w
zl(t) =1-ce is optimal, then wz(t) = 3 M- ql) + A
< g '(q - )] It gy - it <0, q 1‘41 >0 1
1 2 o+ Zrl + 2 o+ Ty 2 a4+ 2r1 E

+
o rl

r.q -r.T r,q
1% 1 171 ).
T > 0 such that (?2 5t rl) (M"ql) + e 'ql'(?2 T a4+ 2r1) =0,

which implies wz(t) =0 t>T, wz(t) >0 t<T.

r.q q
and (q2 S ) (M-ql) + ql(q2 - ﬁ—;T) > 0 , then there exists
1

wz(s)ds =1, wz(s)ds = rz-k where k = (s)ds > 0 .

Y2

Nﬂ
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Contradiction to w('—rz-) w2(s\ds . Check:

16.3 = 3.7 > 0 .

q 1%
___1 M-q)) +aq qz-—-—-—-2r1+a = -5+ 50 x 3.7 >0 .

:
|
N




Aar T

P

CHAPTER V

VARIANT OF THE MODEL

In this chapter we introduce the depreciation factor 6 into the
model. Difficulty arises here because the capital stocks are no longer
monotonic over time in the many machines case. For simplicity, we
concentrate on the one machine case.

The model with the depreciation factor § is:

t
e-é(t-s)

WA

(P) maxfe'“"-u(x(c))dc s.t. Asx(t) -B+x(s)ds + b(t) ,
0

x(t) > 0.

©

(D) minfw(t)°b(t)dt s.t. w(t)A ;fe"s(s't)w(s)-sds +
0 t

e *CeTuR(t))de , w(t) > 0 .

In the one machine case, if we compare the depreciation and non-

depreciation cases, the differences are the following two equations:

z(t) < r e-a(t-s)-y(s)ds + ko-e-(St

w(t) 2 rje-a(s-t)wl(s)ds .
t

The following program is called contraction: x(t) = 1-k0e-6t .

y(t) =0, z(t) = ko-e"‘St .

N I T WP . % o5 o R —




Theorem 5-1:

1> L1

q . ‘s .
is a necessary condition for the existence of an
=a+r+3§

optimal contraction program.

Proof:

c(t) = a'ko-endt +1 - ko-e-dt , ¥(t) is increasing.

Define: w(t) = e_at-w(t) , wl(t) = e-at(a-l)w(t)

o
A

< w(e) - rfe"”s't)-wl<s)ds ----- ()
t

e-(a+6)sds (p(t) 1is increasing)

[

e %t u(t) - (3 -1)v(e) e’ f
t

-at a+ 8 ~r(g-1)

e ‘D(t) o + &
o - _rqg
implies a + 8 - r(q-1) 20,1 > =27 .
Remark:

(1) (*) is the sufficient and necessary condition for the
existence of an optimal contraction program.
(2) In the linear utility function case, the above condition

is also sufficient.

9 veo
From now on, assume 1 < PR and U'(q) > 0 .

In the following, we prove an asymptotic result similar to the

nondepreciation case.

"y

"
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Lemma 1l: ,
t 4
1 ox(t) =0, z(0) =1 f et p(e)ds + ke, x(r) + y(0) '
0
_ 9 r -(r+é)t _ _
z(t) = 1, then y(t) = p—— + (r o k)e , 2(t) = -+ 5
r _ -(r+é8)t
(}71775 k)e .
Proof:
t -8(t=-s) -8t
r j'e s y(s)ds + y(t) = 1 - ke-e , implies
0
$ r -(r+8)t R r -(r+8)¢t
v(t)=r+6+(r+6'k)e » 2(8) = T (r+6 k)e -
Define:
(cle.k) = ‘—‘[r 3 - (r rard k)e-(r%)t]
S(t,k) = -U'(C(t,k)) + raIe_(a+r+6)x-U'(c(x,k))dx'e(a+r+6)t
< t
5(t,k) = U'(c(t,k)) - rfe’("““‘“"s)"-u'(c(x,k))dx-e“"”*“t
t
\6=(k | 0gkgl, sl 20,8k 20 forall tz0]

- -Ir
- rq-U'(.ﬂ—.)
- Y r - _n{—ra r+ 8/ _
Ik r+6’s(t’r+<5) U(r+6)+a+r+6

v._lﬁ__ . r§-—r -a-4 r =1 r§ _ r
U( ) a+r+6 >0’e(t’ )U( )(1 a+r+6)>0'

€EG,G#+0.

r
r+ &

A e
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Lemma 2:

s(t,k) 1is the solution of the following equations:

e E U (e (e, k) +5(5, k)], wy (6) = e[ (@ - DU (e (e, k) = s(, )],

w(t)

w(t) r J'e-s(s-t)'wl(s)ds .
t

Proof:

It is a straightforward calculation B

Theorem 5-2:

-(r+
If k€G , then x(t)=o,y(t)=rf_6+(rf_6-k)e (x+é)t

- =T r -(r+8)t | .
z(t) = -+ 8 (r i k)e is optimal.
Proof:

Define:

w(t) = e Ut (e(t,k)) + s(t,k)]
w (6) = & 5@ - DU (e(e,R)) - s(e,l0], -
w (0) = e U et 10) - rJ'e‘("‘*r*é)s-u'(c(s,k))ds.e(r‘“‘”‘”t
t
+

t

= e %f.ge0(t,k) = e %t (@~ 1)U (c(t,k)) - s(t,k)]

By Lemma 2 and the definition of G , the rest of the proof is

straightforward B

Corollary:

T
1f ko -> T+ 3’ then ko €EGC .

[ T
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Proof:
r r r N
As ko *TE3 s(t,ko) > s(t, —y 6) >0, 9(t,k0) e(t, — 5’) >0
implies ko sc
Lemma 3:
-6t L -6(t-s)
k(t) = kyoe +r fe ®/.y(s)ds 1is monotonic.
0
Proof:

If k(t) 1is not monotonic, say increasing in (T -¢,T) , decreasing
in (T,T+¢) . Since k(t) 1is continuous, some moment right before T
should have the same capital stock as some moment right after T , thus

the same behavior. (See the illustration below.)

k(t) /\

Contradict to the fact that k(t) 1is increasing before T and k(t)

is decreasing after T

Lemma 4:

As t > » _ c(t) - constant, Y(t) - constant.

Proof:

As t > z(t) k(t) + constant (k(t) is monotonic and bounded);

y(t) + constant (k(t) - constant);
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x(t) =+ constant (x(t) + y(t) + z(t) = 1) ;

c(t) = x(t) + qrz(t) + constant, v(ct) » constant Il

Lemma 5:

If x(t) > 0, y(t) > 0, z(t) > 0 , then y(t) = crel@¥d-T(a-DI]t

Proof:

Straightforward @

Lemma 6:

As t +- = | y(t) = B >0 .

Proof:

By contradiction. If y(t) -0 as t -+ > , then 2z(t) -0 ,

x(t) »1 as t =, If y(t) #0 as t + = , contradiction to

Lemma 4 and Lemma 5. If y(t) = 0 as t - = , contradiction to

Theorem 5-1 0

From Lemmas 4, 5 and 6, we know for t sufficiently large,

x(t) = 0 . Thus k(t) - ;—i—g-, k(t) €G as t + = ., We state the

above results in the following theorem.

Theorem 5-3:

(1) 1If ko <3 i 3 then k(t) is increasing, and for ¢

sufficiently large k(t) » = - 5, %x(£) = 0 .

2y 1If kO > ——E—g then k(t) 1is decreasing, and for t

, . r
sufficiently large k(t) - T+ 58 °

x(t) =0

e
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